
1 Teaching Innovation - Entrepreneurial - Global

The Centre for Technology enabled Teaching & Learning

DTEL(Department for Technology Enhanced Learning)

Department of Information Technology

Presentation on

ά5ŀǘŀ {ǘǊǳŎǘǳǊŜ ¦ǎƛƴƎ /έ

2

Author

Yogesh M. Narekar
M.Tech (Computer Science & Engg)

bŀƎŀǊ ¸ǳǿŀƪ {ƘƛƪǎƘŀƴ {ŀƴǎǘƘŀΩǎ

Shri Datta Meghe Polytechnic
Wanadongri , Hingna Road

Nagpur-441110

PREFACE
As educators, we all have the same common goal ȰÔÏ guide our ÓÔÕÄÅÎÔÓȱ so that they

gain the maximum possible in a positive environment that promotes their success
and inculcates in them desire to learn. One of the best tools available to us in this
pursuit is PPT instruction that is systematic and self Learning. The goal of this PPT
is to help teachers in the use of eLearning that it is both
effective and efficient method for teaching our students. It has been developed for
purely academic and non-commercial purpose.

Our desire in preparing this PPT is to support the teachers, who have the very
demanding task of Teaching-Plan to deliver instruction on a lecture/period basis.
The PPT is therefore prepared lecture wise. Further at the end of each chapter
Questions have also been included for practice.

We begin in Chapter 1 with basics of Data structure and Introduction . In Chapters 2 we
learn in details Sorting And Searching. Chapter 3 focuses on First in Last out, Stack
Data Structure. Chapter 4 concentrates on First in First out, Queue Data Structure
and its operation. In Chapter 5, we focus on application of Link List. Chapter 6
presents Understanding of Trees. Chapter 7 concentrates on function of Graph and
Hashing Function.

With deep regards and humility, we thank both our Management of MGI(Meghe Group
of Institution) for motivating and our CEO for strong follow-ups to prepare PPTs
under DTEL(Department for Technology Enhanced Learning). We dedicate this PPT
to students and our shared profession.

Yogesh M. Narekar 3

 /hb¢9b¢Υ 5!¢! {¢w¦/¢¦w9 ¦{LbD Ψ/Ω

DTEL

.

CHAPTER 1: 1

.

.

.

.

.

 CHAPTER 2: 2

 CHAPTER 3: 3

 CHAPTER 4: 4

4

 CHAPTER 5:
5

 CHAPTER 6: 6

 Introduction To Data Structure Slide No-06

Sorting And Searching Slide No-44

Stack Slide No-113

Queues Slide No-166

Link List Slide No-207

Graph And Hashing Slide No-292 CHAPTER 7: 7

Trees Slide No-248

GENERAL OBJECTIVE

DTEL

1

2

5

The student will be able to:

Design and implementation of various basic and
advanced data structures.

Teach efficient storage mechanisms of data for an easy
access.

3

Introduce various searching and sorting techniques
for representation of the data in the real world.

4
Analyze step by step and develop algorithms to solve
real problem.

5
Improve the logical ability.

CHAPTER 1:- Introduction To Data Structure

DTEL

.

TOPIC 1 : Basic Terminology 1

TOPIC 2 : Operations on data structures 2

TOPIC 3 : Different Approaches to designing an algorithm 3

TOPIC 4 : Complexity 4

6

TOPIC 5 : Big óOô Notation 5

DTEL

.

To understand data structure organization & classification 1

To understand operations on data structure. 2

 To understand approaches to design an algorithm. 3

 Knowing the complexity of an algorithm 4

7

CHAPTER-1 SPECIFIC OBJECTIVE / COURSE OUTCOME

The student will be able to:

ü A Data structure is nothing but an arrangement of data either

in computer's memory or on the disk storage.

ü Some common examples of data structure includes arrays,

linked lists, queues, stacks, binary trees, and hash tables.

ü Data structures are widely applied in areas like:

 a. Compiler design b. Operating system

c. Statistical analysis package d. DBMS

e. Numerical analysis f. Simulation

g. Artificial Intelligence h. Graphics

LECTURE 1:-

DTEL 8

1.1 Basic Terminology
INTRODUCTION

When selecting a data structure to solve a problem, the

following steps must be performed.

ü Analysis of the problem to determine the basic operations that

must be supported.

ü Basic operation may include inserting/deleting/searching a

data item from the data structure.

ü Quantify the resource constraints for each operation.

ü Select the data structure that best meets these requirements.

LECTURE 1:-

DTEL 9

INTRODUCTION Contd..
1.1 Basic Terminology

Elementary Data Structure Organization

ü Data structures are building blocks of a program

ü The term DATA means a value or set of values

ü A RECORD is a collection of data items.

ü A FILE is a collection of related records.

ü Each RECORD in a file may consist of multiple data items but

the value of a certain data item uniquely identifies the record

in the file. Such a data item K is called a primary key, and

the values K1, K2 ... in such field are called keys or key

values.

LECTURE 1:-

DTEL 10

1.1 Basic Terminology

Primitive and Non-Primitive Data Types

ü A data type is a classification of data, which can store a

specific type of information.

ü Primitive data types are predefined types of data, which are

supported by the C language like int, char, float, and double.

ü Non-primitive data types are not defined by the C

programming language, but are created by the programmer.

They are created using the basic data types. Example, linked

lists, stacks, queues, graphs, etc.

LECTURE 1:-

DTEL 11

1.1 Basic Terminology

ABSTRACT DATA TYPE
ü In C, an Abstract Data Type can be a structure considered

without regard to its implementation. It can be thought of as a

"description" of the data in the structure with a list of

operations that can be performed on the data within that

structure.

ü The end user is not concerned about the details of how the

methods carry out their tasks.

ü They are only aware of the methods that are available to them

and are concerned only about calling those methods.

DTEL 12

LECTURE 1:- 1.1 Basic Terminology

ABSTRACT DATA TYPE

ü An Abstract Data Type (ADT) is the way at which we look at

a data structure, focusing on what it does and ignoring how it

does its job.

ü For example, Stack And Queue are perfect examples of an

abstract data type.

ü We can implement both these ADTs using an array or a linked

list. This demonstrates the "Abstract" nature of stacks and

queues.

LECTURE 1:-

DTEL 13

1.1 Basic Terminology

CLASSIFICATION OF DATA STRUCTURES : Arrays
ü An Array is a collection of similar data elements.

ü These data elements have the same data type.

ü The elements of the array are stored in consecutive memory

locations and are referenced by an index (also known as the

subscript).

ü Arrays are declared using the following syntax.

 type name[size];

 1st

element

2nd

element

3rd

element

4th

element

5th

element

6th

element

7th

element

8th

element

9th

element

10th

element

marks[0] marks[1] marks[2] marks[3] marks[4] marks[5] marks[6] marks[7] marks[8] marks[9]

LECTURE 2:-

DTEL 14

1.1 Basic Terminology

The limitations with arrays include:

ü Arrays are of fixed size.

ü Data elements are stored in continuous memory locations

which may not be available always.

ü Adding and removing of elements is problematic because of

shifting the elements from their positions.

LECTURE 2:-

DTEL 15

1.1 Basic Terminology

CLASSIFICATION OF DATA STRUCTURES : Arrays

CLASSIFICATION OF DATA STRUCTURES : Linked List

ü Linked list is a very flexible dynamic data structure in which

elements can be added to or deleted from anywhere at will.

ü In contrast to using static arrays, a programmer need not

worry about how many elements will be stored in the linked list.

ü In a linked list, each element (is called a node) is allocated

space as it is added to the list.

ü Every node in the list points to the next node in the list.

LECTURE 2:-

DTEL 16

1.1 Basic Terminology

CLASSIFICATION OF DATA STRUCTURES : Linked List

ü Therefore, in a Linked List every node contains two types of

information:

ü The data stored in the node and A pointer or link to the next

node in the list.

ü Advantage: Provides quick insert, and delete operations

ü Disadvantage: Slower search operation and requires more

memory space

1 2 3 4 5 6 7 X

LECTURE 2:-

DTEL 17

1.1 Basic Terminology

CLASSIFICATION OF DATA STRUCTURES : Stack

ü In computerôs memory, Stacks can be represented as a

linear array.

ü Every stack has a variable TOP associated with it.

ü Top is used to store the address of the topmost element of

the stack..

ü There is another variable MAX which will be used to store

the maximum number of elements that the stack can store.

A AB ABC ABCD ABCDE

 0 1 2 3 TOP = 4 5 6 7 8 9

LECTURE 2:-

DTEL 18

1.1 Basic Terminology

CLASSIFICATION OF DATA STRUCTURES : Stack

ü If TOP = NULL, then it indicates that the stack is empty and if

TOP = MAX, then the stack is full.

ü If TOP = -1, it indicates that there is no element in the stack.

ü Advantage: Last-in, first-out access (LIFO)

ü Disadvantage: Slow access to other elements

LECTURE 2:-

DTEL 19

1.1 Basic Terminology

CLASSIFICATION OF DATA STRUCTURES : Queue

ü A queue is a FIFO (First In First Out) data structure in which

the element that was inserted first is the first one to be taken

out.

ü The elements in a queue are added at one end called the

REAR and removed from the other one end called FRONT.

ü Like stacks, queues can be implemented either using arrays

or linked lists.

9 7 18 14 36 45

 0 FRONT = 1 2 3 4 REAR = 6 7 8 9

LECTURE 2:-

DTEL 20

1.1 Basic Terminology

ü When Rear = MAX ï 1, where MAX is the size of the queue

that is, MAX specifies the maximum number of elements in

the queue.

ü If front = -1 and rear = -1, this means there is no element in

the queue.

ü Advantage: Provides first-in, first-out data access

ü Disadvantage: Slow access to other items

LECTURE 2:-

DTEL 21

1.1 Basic Terminology

CLASSIFICATION OF DATA STRUCTURES : Queue

CLASSIFICATION OF DATA STRUCTURES : Tree
ü A binary tree is a data structure which is defined as a

collection of elements called nodes.

ü Every node contains a "left" pointer, a "right" pointer, and a

data element.

ü Every binary tree has a root element pointed by a "root"

pointer. The root element is the topmost node in the tree.

ü If root = NULL, then it means the tree is empty.

ü Advantages: Provides quick search, insert

 and delete operations

ü Disadvantage: Complicated deletion

 algorithm

1

3 2

4

8

5 6 7

12

10 11

ROOT NODE

T2 T1

9

LECTURE 3:-

DTEL 22

1.1 Basic Terminology

Fig 1.1 : Tree

CLASSIFICATION OF DATA STRUCTURES : Graph

ü A graph is a collection of vertices (also called nodes) and

edges that connect these vertices.

ü A graph is often viewed as a generalization of the tree

structure, where instead of a having a purely parent-to-child

relationship between tree nodes, any kind of complex

relationships between the nodes can be represented.

ü While in trees, the nodes can have many children but only

one parent, a graph on the other hand relaxes all such kinds

of restrictions.

LECTURE 3:-

DTEL 23

1.1 Basic Terminology

ü While in trees, the nodes can have many children but only

one parent, a graph on the other hand relaxes all such kinds

of restrictions.

ü Unlike trees, graphs do not have any root node. Rather, every

node in the graph can be connected with any other node in

the graph.

LECTURE 3:-

DTEL 24

1.1 Basic Terminology
CLASSIFICATION OF DATA STRUCTURES : Graph

ü When two nodes are connected via an edge, the two nodes

are known as neighbors.

ü Advantages: Best models real-world situations

ü Disadvantages: Some algorithms are slow and very complex

A

D
B C

E

LECTURE 3:-

DTEL 25

1.1 Basic Terminology
CLASSIFICATION OF DATA STRUCTURES : Graph

Fig 1.2 : Graph

ü Traversing means to access each data item exactly once so

that it can be processed.

ü Searching is used to find out the location of one or more

data items that satisfies the given constraint.

ü Inserting is used to add new data items in the given list of

data items.

LECTURE 3:-

DTEL 26

1.2 STRUCTURES OPERATIONS
OPERATIONS ON DATA STRUCTURES

ü Deleting means to remove (delete) a particular data item

from the given collection of data items.

ü Sorting arranges data items in some order like ascending

order or descending order depending on the type of

application.

ü Merging combines two sorted lists of data items into a single

list of sorted data items.

LECTURE 3:-

DTEL 27

1.2 STRUCTURES OPERATIONS
OPERATIONS ON DATA STRUCTURES

ALGORITHM

ü The typical meaning of "ALGORITHM" is a formally defined

procedure for performing some calculation.

ü An algorithm provides a blueprint to write a program to solve a

particular problem.

ü It is considered to be an effective procedure for solving a

problem in finite number of steps i.e. a well-defined algorithm

always provides an answer and is guaranteed to terminate.

ü Algorithms are mainly used to achieve software re-use.

DTEL 28

LECTURE 4:- 1.3 Approaches

ALGORITHM
 Write an algorithm to find whether a

number is even or odd

 Step 1: Input the first number as A

 Step 2: IF A%2 =0

 Then Print "EVEN"

 ELSE

 PRINT "ODD"

 Step 3: END

DTEL 29

LECTURE 4:- 1.3 Approaches

Top-down approach

ü Top-down approach starts by dividing the complex algorithm

into one or more modules.

ü The process of decomposition is iterated until the desired

level of module complexity is achieved.

ü Top-down design method is a form of stepwise refinement

where we begin with the topmost module and incrementally

add modules that it calls.

LECTURE 4:-

DTEL 30

1.3 Approaches

ü Bottom-up approach is just the reverse of top-down

approach. Here we start with designing the most basic or

concrete modules and then proceed towards designing

higher-level modules.

ü The higher level modules are implemented by using the

operations performed by lower level modules. T

ü Thus, in this approach sub-modules are grouped to form a

higher level module. This process is repeated until the design

of the complete algorithm is obtained.

LECTURE 4:-

DTEL 31

1.3 Approaches

Bottom-up approach

TIME AND SPACE COMPLEXITY OF ALGORITHM

ü To analyze an algorithm means determining the amount of

resources (such as time and storage) needed to execute it.

ü Algorithms are generally designed to work with an arbitrary

number of inputs, so the efficiency or complexity of an

algorithm is stated in terms of time complexity and space

complexity.

ü The time Complexity of an algorithm is the running time of

the program as a function of the input size.

LECTURE 5:-

DTEL 32

1.4 Complexity

TIME AND SPACE COMPLEXITY OF ALGORITHM

ü On similar grounds, space complexity of an algorithm is the

amount of computer memory required during the program

execution, as a function of the input size.

ü Time complexity of an algorithm depends on the number of

machine instructions in which a program executes.

ü This number depends on the size of the program's input and

the algorithm used.

LECTURE 5:-

DTEL 33

LECTURE 5:- 1.4 Complexity

TIME AND SPACE COMPLEXITY OF ALGORITHM

 The space needed by a program depends on:

ü a) Fixed part, that varies with problem to problem. It

includes space needed for storing instructions, constants,

variables and structured variables (like arrays, structures)

ü b) Variable part, that varies from program to program. It

includes space needed for recursion stack, and for structured

variables that are allocated space dynamically during the run-

time of the program.

LECTURE 5:-

DTEL 34

LECTURE 5:- 1.4 Complexity

Calculating Algorithm Efficiency

ü If a function is linear (without any loops or recursions), the

efficiency of that algorithm or the running time of that algorithm

can be given as the number of instructions it contains.

ü If an algorithm contains certain loops or recursive functions

then the efficiency of that algorithm may vary depending on the

number of loops and the running time of each loop in the

algorithm.

DTEL 35

LECTURE 5:- 1.4 Complexity

Calculating Algorithm Efficiency

ü So, if n is the number of elements, then the efficiency can be

stated as f(n) = efficiency

 Linear loops

 for(i=0;i<n;i++)

 statement block

 f(n) = efficiency

 Logarithmic Loops

 for(i=1;i<n;i*=2)
 for(i=0;i<n;i/=2)

 statement block;
 statement block;

 f(n) = log n f(n) = log n

 DTEL 36

LECTURE 5:- 1.4 Complexity

Calculating Algorithm Efficiency
Nested Loops

 Linear logarithmic

 for(i=0;i<n;i++)

 for(j=1; j<n;j*=2)

 statement

block;

 f(n)= n log n

LECTURE 5:-

DTEL 37

1.4 Complexity

Quadratic Loop

 for(i=0;i<n;i++)

 for(j=1; j<n;j++)

 statement

block;

 f(n) = n * n

Dependent Quadratic

 for(i=0;i<n;i++)

 for(j=1; j<i;j++)

 statement block;

 f(n) = n (n + 1)/2

ü Big-Oh notation where the "O" stands for "order of" is

concerned with what happens for very large values of n.

ü For example, if a sorting algorithm performs n2 operations to

sort just n elements, then that algorithm would be described

as an O(n2) algorithm.

ü When expressing complexity using Big Oh notation, constant

multipliers are ignored. So a O(4n) algorithm is equivalent to

O(n), which is how it should be written.

LECTURE 6:-

DTEL 38

мΦр .ƛƎ ΨhΩ bƻǘŀǘƛƻƴ

Big-Oh notation

ü If f(n) and g(n) are functions defined on positive integer

number n, then

 f(n) = O(g(n))

ü That is, f of n is big oh of g of n if and only if there exists

positive constants c and n, such that

 f (n) Ò Cg(n) Ò n

ü This means that for large amounts of data, f(n) will grow no

more than a constant factor than g(n). Hence, g provides an

upper bound.

LECTURE 6:-

DTEL 39

мΦр .ƛƎ ΨhΩ bƻǘŀǘƛƻƴ

Big-Oh notation

Categories of Algorithms
ü Constant time algorithm that have running time complexity given

as O(1)

ü Linear time algorithm that have running time complexity given as

O(n)

ü Logarithmic time algorithm that have running time complexity

given as O(log n)

ü Polynomial time algorithm that have running time complexity

given as O(nk) where k>1

ü Exponential time algorithm that have running time complexity

given as O(2n)

LECTURE 6:-

DTEL 40

мΦр .ƛƎ ΨhΩ bƻǘŀǘƛƻƴ

Categories of Algorithms

 Table: 1.1

n O(1) O(log n) O(n) O(n log n) O(n2) O(n3)

1 1 1 1 1 1 1

2 1 1 2 2 4 8

4 1 2 4 8 16 64

8 1 3 8 24 64 512

16 1 4 16 64 256 4,096

LECTURE 6:-

DTEL 41

 Number of operations for different functions of n

мΦр .ƛƎ ΨhΩ bƻǘŀǘƛƻƴ

DTEL 42

Chapter 1 Question Bank
1. What is a data structure? Why do we need data structure?

2. Give classification of data structure.

3. Describe various types of operations that can be performed on data

4. structure.

5. What is a data type? Give the classification of data types.

6. What is an algorithm? Write characteristics of an algorithm.

7. What are the different approaches for designing an algorithm?

8. Explain time and space complexity of an algorithm.

9. What is Big '0' notation in algorithms?

10. State the limitations of the Big '0' notation.

LECTURE 6:-

DTEL 43

Summary
 1. Data structure is the particular organization of data either in

mathematical or logical manner.

2. An ADT is the specification of mathematical and logical properties of

data structure.

3. An ADT also acts as a guideline to implement a data structure.

4. The relationship between ADT, data structure and data types is well

defined.

5. An ADT is the specification of a data type whereas data type is the

implementation of ADT.

6. The Data structure comprises computer variables of same or different

data types.

LECTURE 6:-

CHAPTER 2:- SYLLABUS

DTEL

.

TOPIC 1 : Sorting Techniques 1

TOPIC 2 : Searching 2

44

DTEL

.

To understand and apply sorting algorithms on data. 1

To understand and apply searching algorithms on data. 2

45

CHAPTER-2 SPECIFIC OBJECTIVE / COURSE OUTCOME

The student will be able to:

INTRODUCTION

ü The term Sorting means arranging the elements of the array

so that they are placed in some relevant order which may

either be ascending order or descending order.

ü That is, if A is an array then the elements of A are arranged in

sorted order (ascending order) in such a way that, A[0] < A[1]

< A[2] < éé < A[N]

ü For example, if we have an array that is declared and

initialized as,

 int A[] = {21, 34, 11, 9, 1, 0, 22};

LECTURE 1:-

DTEL

2.1 Sorting Techniques

46

INTRODUCTION

ü Then the sorted array (ascending order) can be given as, A[]

= {0, 1, 9, 11, 21, 22, 34}

ü A sorting algorithm is defined as an algorithm that puts

elements of a list in a certain order (that can either be

numerical order, lexicographical order or any user-defined

order).

ü Efficient sorting algorithms are widely used to optimize the

use of other algorithms like search and merge algorithms

which require sorted lists to work correctly.

LECTURE 1:-

DTEL

2.1 Sorting Techniques

47

INTRODUCTION

ü There are two types of sorting:

ü Internal sorting which deals with sorting the data stored in

computerôs memory

ü External sorting which deals with sorting the data stored in

files. External sorting is applied when there is voluminous

data that cannot be stored in computerôs memory.

LECTURE 1:-

DTEL

2.1 Sorting Techniques

48

SELECTION SORT

ü Consider an array ARR with N elements. The Selection Sort

takes N-1 passes to sort the entire array and works as

follows.

ü First find the smallest value in the array and place it in the first

position.

ü Then find the second smallest value in the array and place it

in the second position. Repeat this procedure until the entire

array is sorted. Therefore,

LECTURE 2:-

DTEL 49

2.1 Sorting Techniques

SELECTION SORT

ü In Pass 1, find the position POS of the smallest value in the

array and then swap ARR[POS] and ARR[0]. Thus, ARR[0] is

sorted.

ü In pass 2, find the position POS of the smallest value in sub-

array of N-1 elements. Swap ARR[POS] with ARR[1]. Now,

A[0] and A[1] is sorted.

LECTURE 2:-

DTEL 50

2.1 Sorting Techniques

SELECTION SORT

ü In pass 3, find the position POS of the smallest value in sub-

array of N-2 elements. Swap ARR[POS] with ARR[2]. Now,

ARR[0], ARR[1] and ARR[2] is sorted.

ü In pass N-1, find the position POS of the smaller of the

elements ARR[N-2] and ARR[N-1}. Swap ARR[POS] and

ARR[N-2] so that ARR[0], ARR[1], é , ARR[N-1] is sorted.

LECTURE 2:-

DTEL 51

2.1 Sorting Techniques

Example: Sort the array given below using selection sort

39 9 81 45 90 27 72 18

PASS LOC ARR[0] ARR[1] ARR[2] ARR[3] ARR[4] ARR[5] ARR[6] ARR[7]

1 1 9 39 81 45 90 27 72 18

2 7 9 18 81 45 90 27 72 39

3 5 9 18 27 45 90 81 72 39

4 7 9 18 27 39 90 81 72 45

5 7 9 18 27 39 45 81 72 90

6 6 9 18 27 39 45 72 81 90

LECTURE 2:-

DTEL 52

SELECTION SORT
2.1 Sorting Techniques

 Table 2.1 : An example of Selection Sort

LECTURE 2:-

DTEL 53

SELECTION SORT : Algorithm
2.1 Sorting Techniques

SMALLEST (ARR, K, N, POS)

Step 1: [Initialize] SET SMALL = ARR[K]

Step 2: [Initialize] SET POS = K

Step 3: Repeat for J = K+1 to N

 IF SMALL > ARR[J], then

 SET SMALL = ARR[J]

 SET POS = J

 [END OF IF]

 [END OF LOOP]

Step 4: Exit

Complexity of Selection Sort Algorithm

ü Selection sort is a sorting algorithm that is independent of

ü the original order of the elements in the array.

ü In pass 1, selecting the element with smallest value calls for

ü scanning all n elements; thus, n-1 comparisons are required

ü in the first pass.

ü Then, the smallest value is swapped with the element in the

first position.

LECTURE 2:-

DTEL 54

SELECTION SORT
2.1 Sorting Techniques

Complexity of Selection Sort Algorithm

ü In pass 2, selecting the second smallest value requires

scanning the remaining n ī 1 elements and so on.

ü Therefore, (n ī 1) + (n ī 2) + ... + 2 + 1 = n(n ī 1) / 2 = Ū(n2)

comparisons.

LECTURE 2:-

DTEL 55

SELECTION SORT
2.1 Sorting Techniques

INSERTION SORT

ü Insertion sort is a very simple sorting algorithm, in which the

sorted array (or list) is built one element at a time.

ü Insertion sort works as follows.

ü The array of values to be sorted is divided into two sets. One

that stores sorted values and the other contains unsorted

values.

ü The sorting algorithm will proceed until there are elements in

the unsorted set.

LECTURE 3:-

DTEL 56

2.1 Sorting Techniques

INSERTION SORT

ü Suppose there are n elements in the array. Initially the

element with index 0 (assuming LB, Lower Bound = 0) is in

the sorted set, rest all the elements are in the unsorted set

ü The first element of the unsorted partition has array index 1

(if LB = 0)

ü During each iteration of the algorithm, the first element in the

unsorted set is picked up and inserted into the correct

position in the sorted set.

LECTURE 3:-

DTEL 57

2.1 Sorting Techniques

INSERTION SORT : Example

39 9 45 63 18 81 108 54 72 36

39 9 45 63 18 81 108 54 72 36

LECTURE 3:-

DTEL 58

Consider an array of integers given below. Sort the values in

the array using insertion sort.

2.1 Sorting Techniques

9 39 45 63 18 81 108 54 72 36

9 39 45 63 18 81 108 54 72 36

9 39 45 63 18 81 108 54 72 36

9 18 39 45 63 81 108 54 72 36

9 18 39 45 63 81 108 54 72 36

9 18 39 45 63 81 108 54 72 36

9 18 39 45 54 63 81 108 72 36

ü In Pass 1, A[0] is the only element in the sorted set.

ü In Pass 2, A[1] will be placed either before or after A[0], so that the

array A is sorted

ü In Pass 3, A[2] will be placed either before A[0], in-between A[0]

and A[1] or after A[1], so that the array is sorted.

ü In Pass 4, A[4] will be placed in its proper place so that the array A

is sorted.

LECTURE 3:-

DTEL 59

2.1 Sorting Techniques

9 18 39 45 54 63 72 81 108 36

9 18 36 39 45 54 63 72 81 108

INSERTION SORT : Example

ü In Pass N, A[N-1] will be placed in its proper place so that the

array A is sorted.

ü Therefore, we conclude to insert the element A[K] is in the

sorted list A[0], A[1], é. A[K-1], we need to compare A[K] with

A[K-1], then with A[K-2], then with A[K-3] until we meet an

element A[J] such that A[J] <= A[K].

ü In order to insert A[K] in its correct position, we need to move

each element A[K-1], A[K-2], é., A[J] by one position and then

A[K] is inserted at the (J+1)th location.

LECTURE 3:-

DTEL 60

2.1 Sorting Techniques
INSERTION SORT : Example

LECTURE 3:-

DTEL 61

2.1 Sorting Techniques
INSERTION SORT : Algorithm

Insertion sort (ARR, N) where ARR is an

array of N elements

Step 1: Repeat Steps 2 to 5 for K = 1 to N

Step 2: SET TEMP = ARR[K]

Step 3: SET J = K ï 1

Step 4: Repeat while TEMP <= ARR[J]

 SET ARR[J + 1] = ARR[J]

 SET J = J ï 1

 [END OF INNER LOOP]

Step 5: SET ARR[J + 1] = TEMP

 [END OF LOOP]

Step 6: EXIT

ü For an insertion sort, the best case occurs when the array is

already sorted. In this case the running time of the algorithm

has a linear running time (i.e., O(n)).

ü Even in the average case, the insertion sort algorithm will

have to make at least (K-1)/2 comparisons. Thus, the

average case also has a quadratic running time.

LECTURE 3:-

DTEL 62

INSERTION SORT
2.1 Sorting Techniques

Complexity of Selection Sort Algorithm

BUBBLE SORT
ü Bubble sort is a very simple method that sorts the array

elements by repeatedly moving the largest element to the

highest index position of the array.

ü In Bubble Sorting, consecutive adjacent pairs of elements in

the array are compared with each other.

ü This process is continued till the list of unsorted elements

exhaust.

LECTURE 4:-

DTEL 63

2.1 Sorting Techniques

BUBBLE SORT : Example
 To discuss the bubble sort let us consider an array that has

the following elements A[] = {30, 52, 29, 87, 63, 27, 18, 54}

LECTURE 4:-

DTEL 64

Pass 1:
a) Compare 30 and 52. Since30<52, then no swapping
is done
b) Compare 52 and 29. Since 52>29, swapping is done
 30, 29, 52, 87, 63, 27, 19, 54
c) Compare 52 and 87. Since 52<87, no swapping is
done
d) Compare, 87 and 63. Since, 87>83, swapping is done
 30, 29, 52, 63, 87, 27, 19, 54
e) Compare87 and 27. Since 87>27, swapping is done
 30, 29, 52, 63, 27, 87, 19, 54
f) Compare 87 and 19. Since 87>19, swapping is done
 30, 29, 52, 63, 27, 19, 87, 54
g) Compare 87 and 54. Since 87>54, swapping is done
 30, 29, 52, 63, 27, 19, 54, 87

2.1 Sorting Techniques

LECTURE 4:-

DTEL 65

Pass 2:

a) Compare 30 and 29. Since 30>29, swapping is done

 29, 30, 52, 63, 27, 19, 54, 87

b) Compare 30 and 52. Since 30<52, no swapping is
done

c) Compare 52 and 63. Since 52<63, no swapping is
done

d) Compare 63 and 27. Since 63>27, swapping is done

 29, 30, 52, 27, 63, 19, 54, 87

e) Compare 63 and 19. Since 63>19, swapping is done

 29, 30, 52, 27, 19, 63, 54, 87

f) Compare 63 and 54. Since 63>54, swapping is done

 29, 30, 52, 27, 19, 54, 63, 87

2.1 Sorting Techniques

BUBBLE SORT : Example

LECTURE 4:-

DTEL 66

Pass 3:

a) Compare 29 and 30. Since 29<30, no swapping is
done

b) Compare 30 and 52. Since 30<52, no swapping is
done

c) Compare 52 and 27. Since 52>27, swapping is done

 29, 30, 27, 52, 19, 54, 63, 87

d) Compare 52 and 19. Since 52>19, swapping is done

 29, 30, 27, 19, 52, 54, 63, 87

e) Compare 52 and 54. Since 52<54, no swapping is
done

2.1 Sorting Techniques

BUBBLE SORT : Example

LECTURE 4:-

DTEL 67

Pass 4:

a) Compare 29 and 30. Since 29<30, no swapping is
done

b) Compare 30 and 27. Since 30>27, swapping is done

 29, 27, 30, 19, 52, 54, 63, 87

c) Compare 30 and 19. Since 30>19, swapping is done

 29, 27, 19, 30, 52, 54, 63, 87

d) Compare 30 and 52. Since 30<52, no swapping is
done

2.1 Sorting Techniques

BUBBLE SORT : Example

LECTURE 4:-

DTEL 68

2.1 Sorting Techniques

BUBBLE_SORT(A, N)

Step 1: Repeat steps 2 For I = 0 to N-1

Step 2: Repeat For J = 0 to N ï I

Step 3: If A[J] > A[J + 1], then

 SWAP A[J] and A[J+1]

 [End of Inner Loop]

 [End of Outer Loop]

Step 4: EXIT

BUBBLE SORT : Algorithm

ü The complexity of any sorting algorithm depends upon the

number of comparisons that are made, the number f(n) of

comparisons made can be given as,

ü f(n) = (n ï 1) + (n ï 2) + (n ï 3) + é.. + 3 + 2 + 1 = n (n ï 1)/2

= n2/2 + O(n) = O(n2)

ü Therefore, the complexity of a bubble sort algorithm is O(n2).

LECTURE 4:-

DTEL 69

BUBBLE SORT : Complexity of Bubble Sort

2.1 Sorting Techniques

MERGE SORT

ü Merge sort is a sorting algorithm that uses the divide,

conquer and combine algorithmic paradigm. Where,

ü Divide means partitioning the n-element array to be sorted

into two sub-arrays of n/2 elements in each sub-array.

ü Conquer means sorting the two sub-arrays recursively using

merge sort.

ü Combine means merging the two sorted sub-arrays of size

n/2 each to produce the sorted array of n elements.

LECTURE 5:-

DTEL 70

2.1 Sorting Techniques

MERGE SORT

ü Merge sort algorithms focuses on two main concepts to

improve its performance (running time):

ü The basic steps of a merge sort algorithm are as follows:

ü If the array is of length 0 or 1, then it is already sorted.

Otherwise:

ü (Conceptually) divide the unsorted array into two sub- arrays

of about half the size.

ü Use merge sort algorithm recursively to sort each sub-array

ü Merge the two sub-arrays to form a single sorted list array

LECTURE 5:-

DTEL 71

2.1 Sorting Techniques

9 9 81 45 90 27 72 18

Divide and conquer the array 39 9 81 45 90 27 72 18

39 9 81 45
90 27 72 18

39 9 81 45
90 27 72 18

39 9 81 45
90 27 72 18

39 9 81 45 00 27
72

18

 9 39 45 81 27 90 18 72

 9 39 45 81 18 27 72 90

 9 18 39 45 72 81 90

Combine the elements to form a sorted array

MERGE SORT : Example

LECTURE 5:-

DTEL 72

2.1 Sorting Techniques

9 39 45 81 18 27 72 90

BEG, I MID J END
TEMP

9

INDEX

9 39 45 81 18 27 72 90

BEG I mID J END
TEMP

9 18

INDEX

 9 39 45 81 18 27 72 90

BEG I Mid J END
TEMP

9 18 27

INDEX

9 39 45 81 18 27 72 90

BEG I Mid J END
TEMP

9 18 27 39

INDEX

LECTURE 5:-

DTEL 73

2.1 Sorting Techniques
MERGE SORT : Example

9 39 45 81 18 27 72 90

BEG I Mid J END

9 18 27 39 45

INDEX

9 39 45 81 18 27 72 90

BEG I,Mid J END

9 18 27 39 45 72

INDEX

When I is greater than MID copy the remaining elements of the right sub-array in TEMP

9 18 27 39 45 72 72 81 90

INDEX

LECTURE 5:-

DTEL 74

2.1 Sorting Techniques
MERGE SORT : Example

LECTURE 5:-

DTEL 75

MERGE SORT : Algorithm

2.1 Sorting Techniques

MERGE (ARR, BEG, MID, END)

Step 1: [Initialize] SET I = BEG, J = MID + 1, INDEX = 0

Step 2: Repeat while (I <= MID) AND (J<=END)

IF ARR[I] < ARR[J], then

 SET TEMP[INDEX] = ARR[I]

SET I = I + 1

 ELSE

 SET TEMP[INDEX] = ARR[J]

 SET J = J + 1

 [END OF IF]

 SET INDEX = INDEX + 1

 [END OF LOOP]

Step 3: [Copy the remaining elements of right sub-array, if any]

IF I > MID, then

 Repeat while J <= END

 SET TEMP[INDEX] = ARR[J]

LECTURE 5:-

DTEL 76

MERGE SORT : Algorithm

2.1 Sorting Techniques

 SET INDEX = INDEX + 1, SET J = J + 1

 [END OF LOOP]

 [Copy the remaining elements of left sub-array, if any]

Else

 Repeat while I <= MID

 SET TEMP[INDEX] = ARR[I]

 SET INDEX = INDEX + 1, SET I = I + 1

 [END OF LOOP]

 [END OF IF]

Step 4: [Copy the contents of TEMP back to ARR] SET K=0

Step 5: Repeat while K < INDEX

 a. SET ARR[K] = TEMP[K]

 b. SET K = K + 1

 [END OF LOOP]

Step 6: END

LECTURE 5:-

DTEL 77

2.1 Sorting Techniques
MERGE SORT : Algorithm

MERGE_SORT(ARR, BEG, END)

Step 1: IF BEG < END, then

 SET MID = (BEG + END)/2

 CALL MERGE_SORT(ARR, BEG, MID)

 CALL MERGE_SORT (ARR, MID + 1,

END)

 MERGE (ARR, BEG, MID, END)

 [END OF IF]

Step 2: END

Complexity of Merge Sort Algorithm

ü The running time of the merge sort algorithm in average case

and worst case can be given as O(n log n).

ü Although algorithm merge sort has an optimal time

complexity but a major drawback of this algorithm is that it

needs an additional space of O(n) for the temporary array

TEMP

LECTURE 5:-

DTEL 78

2.1 Sorting Techniques
MERGE SORT

RADIX/BUCKET SORT

ü Radix sort is a linear sorting algorithm for integers that uses

the concept of sorting names in alphabetical order.

ü When we have a list of sorted names, the radix is 26 (or 26

buckets) because there are 26 letters of the alphabet.

ü That is, 26 classes are used to arrange the names, where the

first class stores the names that begins with óAô, the second

class contains names with óBô, so on and so forth

LECTURE 6:-

DTEL 79

2.1 Sorting Techniques

RADIX/BUCKET SORT

ü During the second pass, names are grouped according to the

second letter.

ü After the second pass, the names are sorted on the first two

letters.

ü This process is continued till nth pass, where n is the length of

the names with maximum letters.

ü After every pass, all the names are collected in order of

buckets. maximum digits.

LECTURE 6:-

DTEL 80

2.1 Sorting Techniques

RADIX/BUCKET SORT

ü That is, first pick up the names in the first bucket that contains

names beginning with óAô. In the second pass collect the

names from the second bucket, so on and so forth.

ü When radix sort is used on integers, sorting is done on each

of the digits in the number.

ü The sorting procedure proceeds by sorting the least

significant to most significant digit.

ü When sorting numbers, we will have ten buckets, each for

one digit (0, 1, 2é, 9).

LECTURE 6:-

DTEL 81

2.1 Sorting Techniques

Sort the numbers given below using radix sort. 345,654, 924, 123, 567, 472,

555, 808, 911

In the first pass the numbers are sorted according to the digit at ones place.

The buckets are pictured upside down as shown below.
Number 0 1 2 3 4 5 6 7 8 9

345 345

654 654

924 924

123 123

567 567

472 472

555 555

808 808

911 911

LECTURE 6:-

DTEL 82

RADIX/BUCKET SORT : Example

2.1 Sorting Techniques

 Table 2.2 : An example of Radix Sort Step 1

Numbe

r
0 1 2 3 4 5 6 7 8 9

911 911

472 472

123 123

654 654

924 924

345 345

555 555

567 567

808 808

LECTURE 6:-

DTEL 83

RADIX/BUCKET SORT : Example

2.1 Sorting Techniques

 Table 2.3 : An example of Radix Sort Step 2

Number 0 1 2 3 4 5 6 7 8 9

808 808

911 911

123 123

924 924

345 345

654 654

555 555

567 567

472 472

After this pass, the numbers are collected bucket by bucket. The new list

thus formed is the final sorted result. After the third pass, the list can be

given as, 123, 345, 472, 555, 567, 654, 808, 911, 924.

LECTURE 6:-

DTEL 84

2.1 Sorting Techniques

RADIX/BUCKET SORT : Example

 Table 2.4 : An example of Radix Sort Step 3

LECTURE 6:-

DTEL 85

2.1 Sorting Techniques

RADIX/BUCKET SORT: Algorithm

 RadixSort (ARR, N)

Step 1: Find the largest number in ARR as LARGE

Step 2: [Initialize] SET NOP = Number of digits in LARGE

Step 3: SET PASS = 0

Step 4: Repeat Step 5 while PASS <= NOP-1

Step 5: SET I = 0 AND Initialize buckets

Step 6: Repeat Step 7 to Step 9 while I<N-1

Step 7:SET DIGIT = digit at PASSth place in A[I]

LECTURE 6:-

DTEL 86

2.1 Sorting Techniques

RADIX/BUCKET SORT: Algorithm

 RadixSort (ARR, N)

Step 8: Add A[I} to the bucket numbered DIGIT

Step 9: INCEREMENT bucket count for bucket numbered

DIGIT

 [END OF LOOP]

Step 10: Collect the numbers in the bucket

 [END OF LOOP]

Step 11:END

Complexity of Radix Sort Algorithm

ü To calculate the complexity of radix sort algorithm, assume that

there are n numbers that have to be sorted and the k is the

number of digits in the largest number.

ü In this case, the radix sort algorithm is called a total of k times.

The inner loop is executed for n times.

ü Hence the entire Radix Sort algorithm takes O(kn) time to

execute.

ü When radix sort is applied on a data set of finite size (very small

set of numbers, then the algorithm runs in O(n) asymptotic time.

LECTURE 6:-

DTEL 87

2.1 Sorting Techniques
RADIX/BUCKET SORT

SHELL SORT

ü To visualize the way in which Shell sort works, perform the

following steps:

ü Step 1: Arrange the elements of the array in the form of a

table and sort the columns (using an insertion sort).

ü Step 2: Repeat Step 1, each time with smaller number of

longer columns in such a way that at the end there is only one

column of data to be sorted.

ü Note that we are only visualizing the elements being arranged

in a table, the algorithm does its sorting in-place.

LECTURE 7:-

DTEL 88

2.1 Sorting Techniques

SHELL SORT : Example
Sort the elements given below using Shell sort.

63, 19, 7, 90, 81, 36, 54, 45, 72, 27, 22, 9, 41, 59, 33

ü Arrange the elements of the array in the form of a table

and sort the columns

63 19 7 90 81 36 54 45

72 27 22 9 41 59 33

Result

63 19 7 9 41 36 33 45

72 27 22 90 81 59 54

LECTURE 7:-

DTEL 89

2.1 Sorting Techniques

ü The elements of the array can be given as:

63, 19, 7, 9, 41, 36, 33, 45, 72, 27, 22, 90, 81, 59, 54.

ü Now again, arrange the elements of the array in the form of

a table and sort the columns with smaller number of long

columns

63 19 7 9 41

36 33 45 72 27

22 90 81 59 54

22 19 7 9 27

36 33 45 59 41

63 90 81 72 54

LECTURE 7:-

DTEL 90

SHELL SORT : Example
2.1 Sorting Techniques

22 19 7

9 27 36

33 45 59

41 63 90

81 72 54

ü Again arrange the elements of the array in the form of a

table and sort the columns with smaller number of long

columns

9 19 7

29 27 36

33 45 54

41 63 59

81 72 90

LECTURE 7:-

DTEL 91

SHELL SORT : Example
2.1 Sorting Techniques

ü Again arrange the elements of the array in the form of a table

and sort the columns with smaller number of long columns

9 19

7 22

27 36

33 45

54 41

63 59

81 72

90

7 19

9 22

27 36

33 41

54 45

63 59

81 72

90

LECTURE 7-

DTEL 92

SHELL SORT : Example
2.1 Sorting Techniques

ü Finally arrange the elements of the array in a

single column and sort the column

7

19

9

22

27

36

33

41

54

45

63

59

81

72

90

LECTURE 7:-

DTEL 93

SHELL SORT : Example

2.1 Sorting Techniques

Shell_Sort(Arr, n)

Step 1: SET Flag = 1, gap_size = n

Step 2: Repeat Steps 3 to 6 while Flag = 1 OR gap_size > 1

Step 3: SET Flag = 0

Step 4: SET gap_size = (gap_size + 1) / 2

Step 5: Repeat Step 6 FOR i = 0 to i < (n ï gap_size)

Step 6: IF Arr[i + gap_size] > Arr[i], then

 SWAP Arr[I + gap_size], Arr[i]

 SET Flag = 0

Step 7: END

QUICK SORT

 Quicksort is a widely used sorting algorithm developed by C.

 The quick sort algorithm works as follows:

ü Select an element pivot from the array elements

ü Re-arrange the elements in the array in such a way that all

elements that are less than the pivot appear before the pivot

and all elements greater than the pivot element come after it

(equal values can go either way).

ü After such a partitioning, the pivot is placed in its final

position. This is called the partition operation.

LECTURE 8:-

DTEL 94

2.1 Sorting Techniques

ü The main task in the quick sort algorithm is to find the pivot

element, which will partition the array into two halves.

ü To understand how we find the pivot element follow the steps

given below. (we will take the first element in the array as

pivot)

ü Set the index of the first element in the array to loc and left

variables. Also set the index of the last element of the array to

the right variable.

LECTURE 8:-

DTEL 95

QUICK SORT

2.1 Sorting Techniques

27 10 36 18 25 45

We choose the first element as the pivot. Set loc = 0, left = 0, right = 5 as,

27 10 36 18 25 45

Loc

Left

Right

Scan from right to left. Since a[loc] < a[right], decrease the value of right.

27 10 36 18 25 45

25 10 36 18 27 45

Loc

Left

Right

Since, a[loc] > a[right], interchange the two values and set loc = right.

Left Right, Loc

25 10 36 18 27 45

Left Right, Loc

DTEL 96

QUICK SORT : Example

LECTURE 8:- 2.1 Sorting Techniques

Start scanning from left to right. Since, a[loc] > a[right], increment the value of left.

25 10 36 18 27 45

25 10 27 18 36 45

25 10 27 18 36 45

Left
Right, Loc

Now since, a[loc] < a[right], interchange the values and set loc = left

Left, Loc Right,

Scan from right to left. Since a[loc] < a[right], decrement the value of right.

Left, Loc Right,

Since, a[loc] > a[right], interchange the two values and set loc = right.

25 10 18 27 36 45

Right, Loc

Start scanning from left to right. Since, a[loc] > a[right], increment the value of left.

25 10 18 27 36 45

Left, Right, Loc

LECTURE 8:-

DTEL 97

2.1 Sorting Techniques

Left, Loc

QUICK SORT : Example

LECTURE 8:-

DTEL 98

QUICK SORT: Algorithm

2.1 Sorting Techniques

PARTITION (ARR, BEG, END, LOC)

Step 1: [Initialize] SET LEFT = BEG, RIGHT = END, LOC =

BEG, FLAG = 0

Step 2: Repeat Steps 3 to while FLAG = 0

Step 3: Repeat while ARR[LOC] <=

ARR[RIGHT] AND LOC != RIGHT

 SET RIGHT = RIGHT ï 1

 [END OF LOOP]

Step 4: IF LOC == RIGHT, then

 SET FLAG = 1

 ELSE IF ARR[LOC] > ARR[RIGHT], then

 SWAP ARR[LOC] with ARR[RIGHT]

 SET LOC = RIGHT

LECTURE 8:-

DTEL 99

QUICK SORT: Algorithm

2.1 Sorting Techniques

 [END OF IF]

Step 5: IF FLAG = 0, then

 Repeat while ARR[LOC] >=

ARR[LEFT] AND LOC != LEFT

 SET LEFT = LEFT + 1

 [END OF LOOP]

Step 6: IF LOC == LEFT, then

 SET FLAG = 1

 ELSE IF ARR[LOC] < ARR[LEFT], then

 SWAP ARR[LOC] with ARR[LEFT]

 SET LOC = LEFT

 [END OF IF]

 [END OF IF]

Step 7: [END OF LOOP]

Step 8: END

LECTURE 8:-

DTEL 100

2.1 Sorting Techniques

QUICK SORT : Algorithm

QUICK_SORT (ARR, BEG, END)

Step 1: IF (BEG < END), then

 CALL PARTITION (ARR, BEG, END, LOC)

 CALL QUICKSORT(ARR, BEG, LOC ï 1)

 CALL QUICKSORT(ARR, LOC + 1, END)

 [END OF IF]

Step 2: END

Complexity of Quick Sort Algorithm

ü In the average case, the running time of the quick sort

algorithm can be given as, O(nlogn).

ü The partitioning of the array which simply loops over the

elements of the array once, uses O(n) time.

ü In the best case, every time we partition the array, we divide

the list into two nearly equal pieces.

LECTURE 8:-

DTEL 101

2.1 Sorting Techniques

QUICK SORT

Complexity of Quick Sort Algorithm

ü That is, recursive call processes a sub-array of half the size.

Since, at the most only logn nested calls can be made before

we reach a sub-array of size 1.

ü This means that the depth of the call tree is O(logn).

ü And because at each level there can only be O(n), the

resultant time is given as O(nlogn) time.

LECTURE 8:-

DTEL 102

2.1 Sorting Techniques

QUICK SORT

ALGORITHM AVERAGE CASE WORST CASE

Bubble sort O(n2) O(n2)

Bucket sort O(n.k) O(n2.k)

Selection sort O(n2) O(n2)

Insertion sort O(n2) O(n2)

Shell sort - O(nlog2 n)

Merge sort O(n log n) O(n log n)

Heap sort O(n log n) O(n log n)

Quick sort O(n log n) O(n2)

LECTURE 7:-

DTEL
10

3

COMPARISON OF ALGORITHMS

2.1 Sorting Techniques

 Table 2.5 : Comparison of Algorithm

ü A linear search sequentially moves through your collection

(or data structure) looking for a matching value.

ü In computer science, linear search or sequential search is a

method for finding a particular value in a list, that consists of

checking every one of its elements, one at a time and in

sequence, until the desired one is found.

LECTURE 9:-

DTEL 104

LINEAR SEARCH

2.2 Searching

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/List_(computing)

LINEAR SEARCH : Algorithm

Step 1: [INITIALIZE] SET POS = -1

Step 2: [INITIALIZE] SET I = 0

Step 3: Repeat Step 4 while I<N

Step 4: IF A[I] = VAL, then

 SET POS = I

 PRINT POS

 Go to Step 6

 [END OF IF]

 [END OF LOOP]

Step 5: PRINT ñValue Not Present In The Arrayò

Step 6: EXIT

LECTURE 9:-

DTEL

2.2 Searching

105

LINEAR_SEARCH(A, N, VAL, POS)

LECTURE 9:-

DTEL 106

LINEAR SEARCH : Example

2.2 Searching

 Consider the array given below and search the elements

using Linear search algorithm.

ü A[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

Search KEY VAL=2.

ü PAAS1: KEY VAL 2 is compared with a[0] i.e. KEY != A[0],

Then KEY is compared with next element of array A.

ü PAAS2: Again KEY VAL 2 is compared with a[1] i.e. KEY ==

A[1], So the search is ñSuccessfulò and KEY is found at 1st

position .

ü BEG = lower bound and END = upper bound.

ü MID = (BEG + END) / 2.

ü If VAL < A[MID], then VAL will be present in the left segment

of the array. So, the value of END will be changed as, END =

MID ï 1.

ü If VAL > A[MID], then VAL will be present in the right segment

of the array. So, the value of BEG will be changed as, BEG =

MID + 1

LECTURE 10:-

DTEL 107

BINARY SEARCH : Algorithm

2.2 Searching

LECTURE 10:-

DTEL 108

2.2 Searching

 Consider the array given below and search the elements

using Linear search algorithm.

ü A[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

ü Search VAL=9

ü Int BEG = 0, END = 10, MID = (0 + 10)/2 = 5

ü Now, VAL = 9 and A[MID] = A[5] = 5

ü A[5] is less than VAL, therefore, we will now search for the

value in the later half of the array. So, we change the values

of BEG and MID.

BINARY SEARCH : Example

LECTURE 10:-

DTEL 109

2.2 Searching

ü Now, BEG = MID + 1 = 6, END = 10, MID = (6 + 10)/2 =16/2 = 8

ü Now, VAL = 9 and A[MID] = A[8] = 8

ü A[8] is less than VAL, therefore, we will now search for the value

 in the later half of the array. So, again we change the values

 of BEG and MID.

ü Now, BEG = MID + 1 = 9, END = 10, MID = (9 + 10)/2 =

 9

ü Now VAL = 9 and A[MID] = 9.

ü Now VAL = 9 and A[MID] = 9.

BINARY SEARCH : Example

BINARY SEARCH : Algorithm
LECTURE 10:-

DTEL 110

Step 1: [INITIALIZE] SET BEG = lower_bound, END = upper_bound,

POS = -1

Step 2: Repeat Step 3 and Step 4 while BEG <= END

Step 3: SET MID = (BEG + END)/2

Step 4: IF A[MID] = VAL, then

 POS = MID

 PRINT POS

 Go to Step 6

 IF A[MID] > VAL then;

 SET END = MID - 1

 ELSE

 SET BEG = MID + 1

 [END OF IF]

 [END OF LOOP]

Step 5: IF POS = -1, then

 PRINTF ñVAL IS NOT PRESENT IN THE

ARRAYò

 [END OF IF]

Step 6: EXIT

2.2 Searching

BINARY_SEARCH(A, lower_bound, upper_bound, VAL, POS)

DTEL 111

Chapter 2 Question Bank
1. What is searching and sorting? Enlist different methods.

2. Describe the selection sorting technique.

3. Describe bubble sort by giving one example.

4. Describe merge sorting technique using divide and conquer strategy.

5. With example, explain radix sort in brief.

6. Describe shell sort along with an example.

7. Explain quick sorting technique indicating the use of pivot element.

8. Compare various sorting techniques according to working and

9. complexity.

10. Explain in detail linear search. Give its advantages and

11. disadvantages.

12. Explain binary search in detail with advantages and disadvantages.

LECTURE 10:-

DTEL 112

Summary
 1. Searching and sorting are elementary operations which are frequently

used in many application.

2. Sorting refers to the process of arranging a list of elements in a particular

order. The elements are arranged in ascending or descending order of

their key values.

3. The sorting methods can be classified on the basis of selecting the

smallest, second smallest and third smallest elements and putting these

elements at their proper positions.

4. There are many matrices available for the purpose of comparison sorting

algorithms such as average and worst case complexities .

5. The comparison between merge sort and shell sort is normal.

LECTURE 10:-

CHAPTER 3:- Stack

DTEL

.

TOPIC 1 : Introduction to stack 1

TOPIC 2 : Applications of Stack 2

113

DTEL

.

To understand and apply the knowledge of the

data structure ïóstackô in the application programs.
1

114

CHAPTER-3 SPECIFIC OBJECTIVE / COURSE OUTCOME

The student will be able to:

ü A stack is a linear data structure which can be implemented

either using an array or a linked list.

ü The elements in a stack are added and removed only from

one end, which is called top.

ü A stack is called a LIFO (Last In First Out) data structure as

the element that was inserted last is the first one to be taken

out.

LECTURE 1:-

DTEL 115

3.1 Introduction to stack

Introduction

ü Stack is an important data structure which stores its elements

in an ordered manner.

ü Take an analogy of a pile of plates where one plate is placed

on top of the other. A plate can be removed from the topmost

position. Hence, you can add and remove the plate only

at/from one position that is, the topmost position.
The topmost plate
will be removed first

Another plate
will be added on
top of this plate

LECTURE 1:-

DTEL 116

3.1 Introduction to stack

Fig 3.1 : An example of Stack

ü A stack implements a last in first out or LIFO data structure.

ü It can be visualized as a pile of plates. Plates are added to the

top of pile.

ü The plate at the top of the pile which was the last to be added

will be the first to be removed.

LECTURE 1:-

DTEL 117

3.1 Introduction to stack

Introduction

Structure of stack

LECTURE 1:-

DTEL 118

3.1 Introduction to stack

Fig 3.2: Structure of stack A

Last In First Out

B
A

D
C
B
A

C
B
A

D
C
B
A

E
D
C
B
A

top

top

top

top

top

A

LECTURE 1:-

DTEL 119

3.1 Introduction to stack

Fig 3.3 Structure of stack B

Structure of stack

Stacks as an Abstract Data Type
 ü A stack is a last in, first out (LIFO) abstract data type.

ü An abstract data type is defined indirectly, only by the

operations that may be performed on it and by mathematical

constraints on the effects.

ü A stack is an abstract data type supporting push, pop and

Empty operations.

ü A stack data structure could use an array, a linked list, or

anything that can hold data.

LECTURE 2:-

DTEL 120

3.1 Introduction to stack

ü Placing a data item on the top is called ñpushingò, while

removing an item from the top is called ñpoppingò it.

ü push and pop are the primitive stack operations.

ü push ï Adds an item to the top of a stack.

ü pop ï Removes an item from the top of the stack and returns

it to the user.

Primitive operations of stacks

LECTURE 2:-

DTEL 121

3.1 Introduction to stack

ü isEmpty() :- This function is used to check whether a stack is

empty or not. This function returns boolean value TRUE if

stack is empty otherwise FALSE.

ü isFull() :- This function is used to check whether a stack

becomes full or not. It returns boolean TRUE if stack is full

else FALSE

LECTURE 2:-

DTEL 122

3.1 Introduction to stack

Primitive operations of stacks

ü Assume a simple stack for integers.

ü Stack s = new Stack();

ü s.push(12);

ü s.push(4);

ü s.push(s.top() + 2);

ü s.pop()

ü s.push(s.top());

LECTURE 2:-

DTEL 123

3.1 Introduction to stack

Primitive operations of stacks

ü Array is a static data structure so the collection of data must

be fixed in size.

ü The only problem with this implementation is array size must

be specified initially.

LECTURE 2:-

DTEL 124

3.1 Introduction to stack

Array Representation Of Stacks

Array Representation Of Stacks

ü In computerôs memory stacks can be represented as a linear

array.

ü Every stack has a variable TOP associated with it. TOP is

used to store the address of the topmost element of the stack.

It is this position from where the element will be added or

deleted.

ü There is another variable MAX which will be used to store the

maximum number of elements that the stack can hold.

LECTURE 2:-

DTEL 125

3.1 Introduction to stack

ü A simple way of implementing the Stack ADT uses an array.

ü We add elements from left to right.

ü when a stack is implemented using array there is no need for

pointers and the push and pop operations are realized by

using the operations available on an array.

LECTURE 2:-

DTEL 126

3.1 Introduction to stack

Array Representation Of Stacks

Limitation of Array Representation

ü The stack cannot grow and shrink dynamically as per the

requirement.

LECTURE 2:-

DTEL 127

3.1 Introduction to stack

Push Operation

ü The push operation is used to insert an element in to the

stack.

ü The new element is added at the topmost position of the

stack.

ü However, before inserting the value, we must first check if

TOP=MAX-1, because if this is the case then it means the

stack is full and no more insertions can further be done.

LECTURE 3:-

DTEL 128

3.1 Introduction to stack

Push Operation

ü If an attempt is made to insert a value in a stack that is

already full, an OVERFLOW message is printed.

1 2 3 4 5

0 1 2 3 TOP = 4 5 6 7 8 9

1 2 3 4 5 6

0 1 2 3 TOP = 4 5 6 7 8 9

LECTURE 3:-

DTEL 129

3.1 Introduction to stack

Algorithm to PUSH an element in to the

stack

Step 1: IF TOP = MAX-1, then

 PRINT ñOVERFLOWò

 [END OF IF]

Step 2: SET TOP = TOP + 1

Step 3: SET STACK[TOP] = VALUE

Step 4: END

LECTURE 3:-

DTEL 130

3.1 Introduction to stack
Push Operation

ü The pop operation is used to delete the topmost element from

the stack. However, before deleting the value, we must first

check if TOP=NULL, because if this is the case then it means

the stack is empty so no more deletions can further be done.

ü If an attempt is made to delete a value from a stack that is

already empty, an UNDERFLOW message is printed.

1 2 3 4 5

 0 1 2 3 TOP = 4 5 6 7 8 9

1 2 3 4

 0 1 2 TOP = 3 4 5 6 7 8 9

Pop Operation

LECTURE 3:-

DTEL 131

3.1 Introduction to stack

Algorithm to POP an element from the

stack

Step 1: IF TOP = NULL, then

 PRINT ñUNDERFLOWò

 [END OF IF]

Step 2: SET VAL = STACK[TOP]

Step 3: SET TOP = TOP - 1

Step 4: END

LECTURE 3:-

DTEL 132

3.1 Introduction to stack
Pop Operation

ü Peep is an operation that returns the value of the topmost

element of the stack without deleting it from the stack.

ü However, the peep operation first checks if the stack is empty

or contains some elements. For this, a condition is checked.

If TOP = NULL, then an appropriate message is printed else

the value is returned.

1 2 3 4 5

 0 1 2 3 TOP = 4 5 6 7 8 9

ü Here Peep operation will return 5, as it is the value of the

topmost element of the stack.

LECTURE 3:-

DTEL 133

3.1 Introduction to stack
Peep Operation

Algorithm for Peep Operation

Step 1: IF TOP =NULL, then

 PRINT ñSTACK IS EMPTYò

 Go TO Step 3

Step 2: RETURN STACK[TOP]

Step 3: END

LECTURE 3:-

DTEL 134

3.1 Introduction to stack
Pop Operation

POLISH NOTATIONS

ü Infix, Postfix and Prefix notations are three different but

equivalent notations of writing algebraic expressions.

ü While writing an arithmetic expression using infix notation, the

operator is placed in between the operands.

ü For example, A+B; here, plus operator is placed between the

two operands A and B.

LECTURE 4:-

DTEL 135

3.2 Application of Stack

POLISH NOTATIONS

ü Information is needed about operator precedence,

associativity rules and brackets which overrides these rules.

ü So, computers work more efficiently with expressions written

using prefix and postfix notations.

LECTURE 4:-

DTEL 136

3.2 Application of Stack

 Types of Expressions:-

ü Infix expression

 Ex. (a+b)

ü Prefix expression

 Ex. (+ab)

ü Postfix expression

 Ex. (ab+)

LECTURE 4:-

DTEL 137

3.2 Application of Stack

POLISH NOTATIONS

Postfix notation

ü Postfix notation was given by Jan Lukasiewicz who was a

Polish logician, mathematician, and philosopher. His aim was

to develop a parenthesis-free prefix notation (also known as

Polish notation) and a postfix notation which is better known

as Reverse Polish Notation or RPN.

ü In postfix notation, the operator is placed after the operands.

For example, if an expression is written as A+B in infix

notation, the same expression can be written AB+ in postfix

notation.

LECTURE 5:-

DTEL 138

3.2 Application of Stack

Postfix notation

ü The order of evaluation of a postfix expression is always

from left to right.

ü Brackets can not alter the order of evaluation.

ü Similarly, the expression-

 (A + B) * C is written as ï

 [AB+]*C

LECTURE 5:-

DTEL 139

3.2 Application of Stack

Postfix notation
ü AB+C* in the postfix notation.

ü A postfix operation does not even follow the rules of

operator precedence.

ü The operator which occurs first in the expression is operated

first on the operands.

ü For example, given a postfix notation AB+C*. While

evaluation, addition will be performed prior to multiplication.

LECTURE 5:-

DTEL 140

3.2 Application of Stack

Prefix Notation

ü Although a Prefix notation is also evaluated from left to right

but the only difference between a postfix notation and a prefix

notation is that in a prefix notation, the operator is placed

before the operands.

ü For example, if A+B is an expression in infix notation, then the

corresponding expression in prefix notation is given by +AB.

ü While evaluating a prefix expression, the operators are

applied to the operands that are present immediately on the

right of the operator.

LECTURE 5:-

DTEL 141

3.2 Application of Stack

Prefix Notation

ü Like postfix, prefix expressions also do not follow the rules of

operator precedence, associativity and even brackets cannot

alter the order of evaluation.

ü Convert the following infix expressions into prefix expressions

 (A + B) * C

 (+AB)*C

 *+ABC

LECTURE 5:-

DTEL 142

3.2 Application of Stack

Conversion Of An Infix Expression to postfix

LECTURE 6:-

DTEL 143

3.2 Application of Stack

Algorithm

Step 1: Add ó)ò to the end of the infix expression

Step 2: Push ñ(ñ on to the stack

Step 3: Repeat until each character in the infix notation is scanned

 IF a ñ(ñ is encountered, push it on the stack

 IF an operand (whether a digit or an alphabet) is encountered, add it to

the postfix expression.

 IF a ñ)ò is encountered, then;

ÅRepeatedly pop from stack and add it to the postfix expression

until a ñ(ò is encountered.

ÅDiscard the ñ(ñ. That is, remove the ñ(ñ from stack and do not add it

to the postfix expression.

LECTURE 6:-

DTEL 144

3.2 Application of Stack

Algorithm

 IF an operator O is encountered, then;

 a. Repeatedly pop from stack and add each operator (popped

from the stack) to the postfix expression until it has the same

precedence or a higher precedence than O.

 b. Push the operator O to the stack

[END OF IF]

Step 4: Repeatedly pop from the stack and add it to the postfix expression

until the stack is empty

Step 5: EXIT

Conversion Of An Infix Expression to postfix

Exercise: Convert the following

infix expression into postfix

expression using the algorithm

given in figure .

A ï (B / C + (D % E * F) / G)* H

A ï (B / C + (D % E * F) / G)* H)

Infix Character

Scanned

STACK Postfix Expression

(

A (A

- (- A

((- (A

B (- (A B

/ (- (/ A B

C (- (/ A B C

+ (- (+ A B C /

((- (+ (A B C /

D (- (+ (A B C / D

% (- (+ (% A B C / D

E (- (+ (% A B C / D E

* (- (+ (%

*

A B C / D E

F (- (+ (%

*

A B C / D E F

) (- (+ A B C / D E F * %

/ (- (+ / A B C / D E F * %

G (- (+ / A B C / D E F * % G

) (- A B C / D E F * % G / +

* (- * A B C / D E F * % G / +

H (- * A B C / D E F * % G / + H

) A B C / D E F * % G / + H * -

Convert the infix into postfix expression
LECTURE 7:-

DTEL 145

3.2 Application of Stack

Algorithm to evaluate a postfix expression

Step 1: Add a ñ)ò at the end of the postfix expression

Step 2: Scan every character of the postfix expression and

repeat steps 3 and 4 until ñ)òis encountered

Step 3: IF an operand is encountered, push it on the stack

IF an operator O is encountered, then

pop the top two elements from the stack as A and

B

 Evaluate B O A, where A was the topmost element and

B was the element below A.

 Push the result of evaluation on the stack

[END OF IF]

Step 4: SET RESULT equal to the topmost element of the

stack

Step 5: EXIT

Evaluation of postfix Expression : Algorithm

LECTURE 8:-

DTEL 146

3.2 Application of Stack

Let us now take an example that makes use of this algorithm.

Consider the infix expression given as ñ9 - ((3 * 4) + 8) / 4ò.

Evaluate the expression.

The infix expression "9 - ((3 * 4) + 8) / 4" can be written as ñ9 3 4 * 8 + 4 / -ñ

using postfix notation. Look at table I which shows the procedure.

Character scanned Stack

9 9

3 9, 3

4 9, 3, 4

* 9, 12

8 9, 12, 8

+ 9, 20

4 9, 20, 4

/ 9, 5

- 4

Evaluation Of postfix Expression

LECTURE 8:-

DTEL 147

3.2 Application of Stack

Convert Infix Expression To Prefix Expression

Step 1: Reverse the infix string. Note that while

reversing the string you must interchange left and right

parenthesis.

Step2: Obtain the corresponding postfix expression of

the infix expression obtained as a result of Step1.

Step 3: Reverse the postfix expression to get the prefix

expression

LECTURE 9:-

DTEL 148

3.2 Application of Stack

Convert Infix Expression To Prefix Expression
For example, given an infix expression-

(A ï B / C) * (A / K ï L)

Step 1: Reverse the infix string. Note that while reversing

the string you must interchange left and right parenthesis.

(L ï K / A) * (C / B ï A)

Step2: Obtain the corresponding postfix expression of the

infix expression obtained as a result of Step1.

The expression is: (L ï K / A) * (C / B ï A)

Therefore, [L ï (K A /)] * [(C B /) - A]

 = [LKA/-] * [CB/A-]

 = L K A / - C B / A - *

Step 3: Reverse the postfix expression to get the prefix

expression

Therefore, the prefix expression is * - A / B C - / A K L

LECTURE 9:-

DTEL 149

3.2 Application of Stack

EVALUATION OF PREFIX EXPRESSION

LECTURE 10:-

DTEL 150

3.2 Application of Stack

Algorithm to evaluate a prefix expression

Step 1: Add a ñ)ò at the end of the postfix expression

Step 2: Scan every character of the postfix expression and

repeat steps 3 and 4 until ñ)òis encountered

Step 3: IF an operand is encountered, push it on the stack

IF an operator O is encountered, then

pop the top two elements from the stack as A and B

EVALUATION OF PREFIX EXPRESSION

LECTURE 10:-

DTEL 151

3.2 Application of Stack

Evaluate B O A, where A was the topmost element and B

was the element below A.

 Push the result of evaluation on the stack

[END OF IF]

Step 4: SET RESULT equal to the topmost element of the

stack

Step 5: EXIT

EVALUATION OF PREFIX EXPRESSION : Example

 consider the prefix expression + - 9 2 7 * 8 / 4 12. Let us

now apply the algorithm to evaluate this expression.

LECTURE 10:-

DTEL 152

3.2 Application of Stack

 Table 3.1 : Evaluation of Prefix Expression

Character Scanned Operand Stack

12 12

4 12,4

 3

8 3,8

* 24

7 24,7

2 24,7,2

- 24,5

+ 29

RECURSIVE FUNCTIONS

ü A recursive function is a function that calls itself to solve a

smaller version of its task until a final call is made which does

not require a call to itself.

ü Every recursive solution has two major cases, they are base

case, in which the problem is simple enough to be solved

directly without making any further calls to the same function.

LECTURE 11:-

DTEL 153

3.2 Application of Stack

RECURSIVE FUNCTIONS

ü Recursive case, in which first the problem at hand is divided

into simpler sub parts.

ü Second the function calls itself but with sub parts of the

problem obtained in the first step.

ü Third, the result is obtained by combining the solutions of

simpler sub-parts.

LECTURE 11:-

DTEL 154

3.2 Application of Stack

Rules for Recursion

ü In recursion it is essential for a function to call itself ,

otherwise recursion will not take place.

ü To stop the recursive function it is necessary to write proper

terminating statements such as exit().

ü When a recursive function is executed , the recursive calls are

not implemented instantly.

ü All the recursive calls are pushed onto the stacks.

LECTURE 11:-

DTEL 155

3.2 Application of Stack

Advantages of recursion

ü The recursion is very flexible data structure like stacks ,

queues.

ü Using recursion the length of the program can be reduced.

LECTURE 11:-

DTEL 156

3.2 Application of Stack

Disadvantages of recursion

ü It requires extra storage space.

ü If the programmer forgot to specify the exit condition in the

recursive function , the program will execute out of memory.

LECTURE 11:-

DTEL 157

3.2 Application of Stack

FINDING FACTORIAL OF A NUMBER USING RECURSION

PROBLEM

5!

= 5 X 4!

= 5 X 4 X 3!

= 5 X 4 X 3 X 2!

= 5 X 4 X 3 X 2 X 1!

SOLUTION

5 X 4 X 3 X 2 X 1!

= 5 X 4 X 3 X 2 X 1

= 5 X 4 X 3 X 2

= 5 X 4 X 6

= 5 X 24

= 120

LECTURE 12:-

DTEL 158

3.2 Application of Stack

factorial(n) = n X factorial (n-1)

 #include<stdio.h>

 int Fact(int)

 { if(n==1)

 retrun 1;

 return (n * Fact(n-1));

 }

 main()

 { int num;

 scanf(ñ%dò, &num);

 printf(ñ\n Factorial of %d = %dò, num, Fact(num));

 return 0;

 }

LECTURE 12:-

DTEL 159

3.2 Application of Stack
FINDING FACTORIAL OF A NUMBER USING RECURSION

THE FIBONACCI SERIES
ü The Fibonacci series can be given as:

 0 1 1 2 3 5 8 13 21 34 55éé

ü That is, the third term of the series is the sum of the first and second terms.

On similar grounds, fourth term is the sum of second and third terms, so on

and so forth. Now we will design a recursive solution to find the nth term of

the Fibonacci series. The general formula to do so can be given as

FIB(n) = 1, if n<=2

 FIB (n - 1) + FIB (n - 2),

otherwise

FIB(7)

FIB(6) FIB(5)

FIB(5) FIB(4) FIB(4)

FIB(4) FIB(3) FIB(3) FIB(2) FIB(3) FIB(2) FIB(2) FIB(1)

FIB(3) FIB(2)

FIB(2) FIB(1)

FIB(2) FIB(1) FIB(2) FIB(1) FIB(2) FIB(1)

FIB(3)

LECTURE 12:-

DTEL 160

3.2 Application of Stack

 Fig 3.4 : Fibonacci series using recursion

THE FIBONACCI SERIES
main()

{ int n;

 printf(ñ\n Enter the number of terms in the series :

ñ);

 scanf(ñ%dò, &n);

 for(i=0;i<n;i++)

 printf(ñ\n Fibonacci (%d) = %dñ, i,

Fibonacci(i));

}

int Fibonacci(int num)

{ if(num <= 2)

 return 1;

 return (Fibonacci (num - 1) + Fibonacci(num ï

2));

}

LECTURE 12:-

DTEL 161

3.2 Application of Stack

DTEL 162

Chapter 3 Question Bank
1. Explain the concept of stack.

2. Explain the operations that can be performed on stack.

3. Write a procedure to pop an element from the stack.

4. Write a program to implement stack using an array.

5. Write a note on stacks using linked list.

6. Explain applications of stack,

7. Explain how reversing of list is carried out.

8. Define and explain polish notations.

9. Write an algorithm to convert infix expression to postfix expression.

10. Write an algorithm to evaluate postfix expression.

11. Write an algorithm to convert infix expression to prefix expression.

12. Convert following expression in postfix form : A + (B + C * D) / (E * F).

LECTURE 12:-

DTEL 163

Chapter 3 Question Bank
13. Convert the infix expression into postfix expression. ((A + B) * C ð

 ((D * E) + F)).

14. Evaluate the following postfix expression using stack. Postfix string :

 123 * + 4 ð.

15. Convert the following infix expression to prefix expression and give

 various steps in evaluating usi (5 * 3 T 2) I (3 + (7 + 3) / 10).

16. Evaluate the following postfix expression : 45 + 36 * ð 32 A + 82 / 3

 57 * + +,

17. Convert the following infix expression into prefix expression:

 (i) A + B * (D / (E $ F)) * G) * H.

 (ii) A/B AC+ (D * E) ð (A * C).

 (iii) A+B T D/ (CE ð F) + G).

LECTURE 12:-

DTEL 164

Summary

1. A Stack is a linear structure implemented in LIFO (Last In First Out)

manner where insertion and deletion take place at the same end.

2. An insertion in stack is called pushing and deletion from stack is called

popping.

3. When stack is full and an attempt is made to insert an element in the stack

, it is called OVERFLOW.

4. When stack is full and an attempt is made to delete an element in the

stack , it is called UNDERFLOW.

LECTURE 10:-

CHAPTER 4:- Queue

DTEL

.

TOPIC 1 : Introduction 1

TOPIC 2 : Types of Queue 2

165

TOPIC 3 : Applications of Queue 3

DTEL

.

To understand and apply the knowledge of the

data structure ï óQueueô in the application programs.
1

166

CHAPTER-4 SPECIFIC OBJECTIVE / COURSE OUTCOME

The student will be able to:

QUEUES- Queues as an abstract data type

ü Queue is an important data structure which stores its

elements in an ordered manner. Take for example the

analogies given below.

ü People moving on an escalator. The people who got on the

escalator first will be the first one to step out of it.

ü People waiting for bus. The first person standing in the line

will be the first one to get into the bus.

LECTURE 1:-

DTEL 167

 4.1 Introduction

QUEUES- Queues as an abstract data type

ü A queue is a FIFO (First In First Out) data structure in which

the element that was inserted first is the first one to be taken

out.

ü The elements in a queue are added at one end called the rear

and removed from the other one end called front.

LECTURE 1:-

DTEL 168

 4.1 Introduction

 Fig 4.1 : A Queue

LECTURE 1:-

DTEL 169

ü A straight meaning of a queue is a waiting line.

ü Queue is an ADT data structure similar to stack, except that

the first item to be inserted is the first one to be removed.

ü This mechanism is called First-In-First-Out (FIFO).

ü Placing an item in a queue is called ñinsertion or enqueueò,

which is done at the end of the queue called ñrearò.

 4.1 Introduction
QUEUES- Queues as an abstract data type

LECTURE 1:-

DTEL 170

ü Removing an item from a queue is called ñdeletion or

dequeueò, which is done at the other end of the queue called

ñfrontò.

ü Queue is one of the most common of all data processing

structures.

ü Queue are also very useful in a time-sharing computer

systems where many users share the systems

simultaneously.

 4.1 Introduction
QUEUES- Queues as an abstract data type

Example of QUEUE : First In First Out

A

B

A

C

B

A

D

C

B

A

D

C

B

rear

front

Rear

front

rear

front

rear

front

LECTURE 1:-

DTEL 171

 4.1 Introduction

rear

front

Fig 4.2 : An example Queue

ü The representation of a queue as an Abstract Data Type is

very straightforward.

ü The ADT type is used to denote the type of the queue element

and parameterize the queue type with ADT type.

LECTURE 1:-

DTEL 172

 4.1 Introduction
QUEUES- Queues as an abstract data type(ADT)

Array Representation Of Queue

ü Queues can be easily represented using linear arrays. As

stated earlier, every queue will have front and rear variables

that will point to the position from where deletions and

insertions can be done respectively.

ü Consider a queue shown in figure

12 9 7 18 14 36

 0 1 2 3 4 5 6 7 8 9

LECTURE 2:-

DTEL 173

 4.1 Introduction

Array Representation Of Queue

 Here, front = 0 and rear = 5. If we want to add one more value

in the list say with value 45, then rear would be incremented

by 1 and the value would be stored at the position pointed by

rear. The queue after addition would be as shown in figure

12 9 7 18 14 36 45

 0 1 2 3 4 5 6 7 8 9

LECTURE 2:-

DTEL 174

 4.1 Introduction

ü Here, front = 0 and rear = 6. Every time a new element has to

be added, we will repeat the same procedure.

ü Now, if we want to delete an element from the queue, then the

value of front will be incremented. Deletions are done from

only this end of the queue. The queue after deletion will be as

shown in figure 9 7 18 14 36 45

 0 1 2 3 4 5 6 7 8 9

LECTURE 2:-

DTEL 175

 4.1 Introduction
Array Representation Of Queue

Here, front = 1 and rear = 6.

 An overflow will occur when we wll try to insert an element into

a queue that However, before inserting an element in the

queue we must check for overflow conditions.

ü is already full. When Rear = MAX ï 1, where MAX is the size

of the queue that is, MAX specifies the maximum number of

elements that the queue can hold.

LECTURE 2:-

DTEL 176

 4.1 Introduction
Array Representation Of Queue

ü Similarly, before deleting an element from the queue, we must

check for underflow condition.

ü An underflow condition occurs when we try to delete an

element from a queue that is already empty.

ü If front = -1 and rear = -1, this means there is no element in

the queue.

LECTURE 2:-

DTEL 177

 4.1 Introduction
Array Representation Of Queue

Operations on queue

ü Create :- This operation creates a new empty queue.

ü Insert :- Adds an element to the queue. A new element will be

added at the rear end.

ü Delete :- Removes an element from the queue. Element will

be removed from the front end.

LECTURE 3:-

DTEL 178

 4.1 Introduction

1.Create Queue

LECTURE 3:-

DTEL 179

 4.1 Introduction

Fig 4.3 : Creation of Queue

2. Insert operation
void insert(QUEUE *qptr, char x)

{

if(qptr->rear == MAXQUEUE-1)

{

 printf("Queue is full!");

 exit(1);

}

else

{

qptr->rear++;

qptr->items[qptr->rear]=x;

}

 }

LECTURE 3:-

DTEL 180

 4.1 Introduction

An item (A) is inserted at the Rear of the queue

LECTURE 3:-

DTEL 181

 4.1 Introduction

Fig 4.4 : Insertion of an item in Queue

Algorithms to insert an element from the Queue

Algorithm to insert an element in the queue

Step 1: IF REAR=MAX-1, then;

 Write OVERFLOW

 [END OF IF]

Step 2: IF FRONT == -1 and REAR = -1, then;

 SET FRONT = REAR = 0

 ELSE

 SET REAR = REAR + 1

 [END OF IF]

Step 3: SET QUEUE[REAR] = NUM

Step 4: Exit

LECTURE 3:-

DTEL 182

 4.1 Introduction

3. Delete Operation

char remove(struct queue *qptr)

{

char p;

if(qptr->front > qptr->rear){

printf("Queue is empty");

exit(1);

}

else

{p=qptr->items[qptr->front];

qptr->front++;

return p;

}

 }

LECTURE 4:-

DTEL 183

 4.1 Introduction

LECTURE 4:-

DTEL 184

 4.1 Introduction

3. Delete Operation

Fig 4.5 : Deletion of an item from Queue

LECTURE 4:-

DTEL 185

 4.1 Introduction

3. Delete Operation

Fig 4.6 : Deletion of an item from Queue

Algorithms to delete an element from the Queue

Algorithm to delete an element from the

queue

Step 1: IF FRONT = -1 OR FRONT > REAR,

then;

 Write UNDERFLOW

 ELSE

 SET FRONT = FRONT + 1

 SET VAL = QUEUE[FRONT]

 [END OF IF]

Step 2: Exit

LECTURE 4:-

DTEL 186

 4.1 Introduction

Circular Queue
7 18 14 36 45 21 99 72

 0 1 2 3 4 5 6 7 8 9

ü Here, front = 2 and rear = 9.

ü Now, if you want to insert any new element, although there is

space but insertion cannot be done because the space is

available on the left side. In our algorithm, we have said if rear

= MAX ï 1, then write OVERFLOW.

ü So as per that, OVERFLOW condition exists. This is the major

drawback of a linear queue.

ü Even if space is available, no insertions can be done once

rear becomes equal to MAX ï 1.

LECTURE 5:-

DTEL 187

 4.2 Types of Queue

Circular Queue

ü Finally, this leads to wastage of space.

ü To cater to this situation, we have two solutions. First, shift the

elements to the left so that the vacant space can be occupied

and utilized efficiently.

ü The second option is to use a circular queue. In circular

queue, the first index comes right after the last index.

Conceptually, you can think of a circular queue as shown in

figure

LECTURE 5:-

DTEL 188

 4.2 Types of Queue

Q[6]
Q[0]

Q[1]

Q[2]

Q[3] Q[4]

Q[5]

ü The circular queue will be full, only when

front=0 and rear = Max ï 1.

ü A circular queue is implemented in the

same manner as the linear queue is

implemented. The only difference will be in

the code that performs insertion and

deletion operations.

ü If front=0 and rear= MAX ï 1, then print that

the circular queue is full. Look at queue

given in figure which illustrates this point.

LECTURE 5:-

DTEL 189

 4.2 Types of Queue

Circular Queue

 Fig 4.7 : Circular Queue

90 49 7 18 14 36 45 21 99 72

 Front=0 1 2 3 4 5 6 7 8 rear = 9

 If rear != MAX ï 1, then the value will be inserted and rear will

be incremented as illustrated in figure

90 49 7 18 14 36 45 21

 Front=0 1 2 3 4 5 6 7 rear= 8 9

LECTURE 5:-

DTEL 190

 4.2 Types of Queue

Circular Queue

LECTURE 5:-

DTEL 191

 4.2 Types of Queue

Example-Circular Queue

Fig 4.8: Comparison of Linear and Circular Queue

Step 1: IF FRONT = 0 and Rear = MAX ï 1, then

 Write ñOVERFLOWò

 ELSE IF FRONT = -1 and REAR = -1, then;

 SET FRONT = REAR = 0

 ELSE IF REAR = MAX ï 1 and FRONT != 0

 SET REAR = 0

 ELSE

 SET REAR = REAR + 1

[END OF IF]

Step 2: SET QUEUE[REAR] = VAL

Step 3: Exit

LECTURE 5:-

DTEL 192

 4.2 Types of Queue

Circular Queue

Algorithm to insert an element in the circular queue

Step 1: IF FRONT = -1, then

 Write ñUnderflowò

 SET VAL = -1

 [End of IF]

Step 2: SET VAL = QUEUE[FRONT]

Step 3: IF FRONT = REAR

 SET FRONT = REAR = -1

 ELSE

 IF FRONT = MAX -1

 SET FRONT = 0

 ELSE

 SET FRONT = FRONT + 1

 [End of IF]

 [END OF IF]

Step 4: Exit

LECTURE 5:-

DTEL 193

 4.2 Types of Queue

Circular Queue

Algorithm to delete an element from a circular queue

Priority Queues

ü A priority queue is an abstract data type in which the each

element is assigned a priority.

ü The priority of the element will be used to determine the order

in which these elements will be processed.

ü The general rule of processing elements of a priority queue

can be given as:

ü An element with higher priority is processes before an element

with lower priority.

LECTURE 6:-

DTEL 194

 4.2 Types of Queue

Priority Queues

ü Two elements with same priority are processed on a first

come first served (FCFS) basis

ü A priority queue can be thought of as a modified queue in

which when an element has to be taken off the queue, the

highest-priority one is retrieved first.

ü The priority of the element can be set based upon distinct

factors.

LECTURE 6:-

DTEL 195

 4.2 Types of Queue

ü In computerôs memory a priority queue can be represented

using arrays or linked lists. When a priority queue is

implemented using a linked list, then every node of the list will

have three parts:

 (i) the information or data part

 (ii) the priority number of the element

 (iii) address of the next element. If we are using a sorted

linked list, then element having higher priority will precede the

element with lower priority.

ü Note: lower priority number means higher priority.

A 1 B 2 C 3 D 3 E 4

A 1 B 2 C 3 X 4 D 5 E

6 X

LECTURE 6:-

DTEL 196

 4.2 Types of Queue

Priority Queues

DEQUE

ü A DEQUE is a list in which elements can be inserted or

deleted at either end. It is also known as a head-tail linked list,

because elements can be added to or removed from the front

(head) or back (tail).

ü However, no element can be added and deleted from the

middle.

ü In computerôs memory, a DEQUE is implemented either using

a circular array or a circular doubly linked list.

LECTURE 7:-

DTEL 197

 4.2 Types of Queue

29 37 45 54 63

 0 1 2 LEFT = 3 4 5 6 RIGHT = 7 8 9

42
56 63 27 18

RIGHT = 0 1 2 LEFT = 3 4 5 6 LEFT = 7 8 9

LECTURE 7:-

DTEL 198

 4.2 Types of Queue
DEQUE

ü In a DEQUE, two pointers are maintained, LEFT and RIGHT

which points to either end of the deque.

ü The elements in a DEQUE stretch from LEFT end to the the

RIGHT and since it is circular, DEQUE[N-1] is followed by

Dequeue[0].

DEQUE

ü Basically, there are two variants of a double ended queue.

They are:

ü Input restricted DEQUE : In this deque insertions can be

done only at one of the deque while deletions can be done

from both the ends.

ü Output restricted DEQUE : In this deque deletions can be

done only at one of the deque while insertions can be done

on both the ends.

LECTURE 7:-

DTEL 199

 4.2 Types of Queue

